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Abstract

Nowadays, the growing amount of
biomedical scientific literature that can
be accessed online represents a valuable
source of information useful to tailor med-
ical decisions to a specific clinical case.
With this respect, Information Retrieval
tools play an essential role in enabling
physicians to automatically analyze huge
amounts of publications so as to retrieve
relevant recent information related to
the treatment, prevention or prognosis of
specific clinical conditions and traits.

In this paper, we present and discuss
the biomedical scientific Information Re-
trieval strategy we developed in the con-
text of our participation to the Precision
Medicine Track of the Text Retrieval Con-
ference 2018. Given the description of a
clinical case, we describe how we retrieve
from PubMed a ranked list of scientific ab-
stracts that discuss medical care that may
be relevant for the patient under consider-
ation. To this purpose we rely on the query
formulation capabilities provided by Elas-
ticsearch, a full-text search engine, com-
plemented by data processing steps useful
both to properly build search queries and
to refine the ranking of search results pro-
posed by Elasticsearch.

1 Introduction

Nowadays, many areas of medical care are more
and more characterized by a wide range of pos-
sibilities to tailor medical decisions (i.e. treat-
ments, procedures, etc.) to each individual. In-
deed, currently we have access to an increasingly
large number of clinical and biological datasets
like Electronic Health Records, collections of

human genomic sequences, and proteomic and
metabolomic databases. This data availability can
be coupled with powerful computational tools to
integrate and mine information, thus giving physi-
cians the opportunity to adapt their decisions to
a specific medical scenario by exploiting clinical,
genetic, molecular or cellular traits of the patient.
This approach towards the customization of clini-
cal decisions to a specific patient (or to a subgroup
of the patients’ population) is usually referred to
as precision medicine (PM) (Jameson and Longo,
2015).

In this scenario, the increasing amount of
biomedical scientific literature that is currently
available online represents a valuable source of
information to support PM. However, due to the
huge and rapidly growing number of biomedical
scientific publications that can be accessed on the
web, it is impossible for clinicians to manually ex-
plore their content so as to be up-to-date on new,
relevant evidence-based treatments. For instance,
PubMed, the main search engine for biomedical
literature, currently includes more than 27 million
papers and is growing at a rate of about 1,500 new
publications indexed per day. As a consequence,
the availability of Information Retrieval (IR) tools
that, given a clinical case, allow to effectively re-
trieve relevant recent information related to treat-
ment, prevention or prognosis is essential.

In this regard, in the context of the Text Re-
trieval Conference 2018 (TREC), the Precision
Medicine Track (PM Track) has been organized.
Participants to the PM Track have been proposed a
set of 50 descriptions of oncological clinical cases.
Each case is characterized by the type of cancer
suffered by the patient, the relevant genetic vari-
ants and other demographic information. Given
this input data, two IR subtasks have been defined:
for each clinical case, participants were required
to generate (i) a ranked list of scientific abstracts,



mainly from PubMed, describing treatments that
may be relevant for the patient and (ii) a ranked list
of clinical trials from ClinicalTrials.gov in which
the patient could be enrolled.

Here we present and discuss our participation
(team: IBI_PM) to the PM Track subtask related to
the ranking of PubMed abstracts. In particular, the
rest of this papers is organized in 4 sections. Sec-
tion 2 provides a brief overview of the PM Track
dataset, considering both the clinical case descrip-
tions and the collection of scientific abstracts. Sec-
tion 3 describes our IR approach by providing: the
introduction to the TREC_ResMarkerDB Graph
(subsection 3.1), a knowledge resource tailored to
support a better ranking of Pubmed abstracts; the
presentation of our data indexing approach (sub-
section 3.2); the explanation of the term expansion
applied to diseases, genes and variants (subsec-
tion 3.3); the description of the our query building
approach (subsection 3.4); and finally the defi-
nition of our customized refinement of search re-
sult ranking (subsection 3.5). Ultimately, section 4
presents the results of our participation to the PM
Track and section 5 exposes our conclusions and
future venues of research.

2 Dataset

A set of 50 clinical case descriptions has been pro-
posed to the participants of the PM Track at TREC
2018. Eeach clinical case has been created by on-
cologists and describes the disease, genetic vari-
ants and demographic information of a patient. Ta-
ble 1 shows an example of a clinical case descrip-
tion.

For each clinical case, participants have been re-
quired to deal with the following two subtasks: re-
trieve a ranked list of relevant scientific abstracts
and a ranked list of clinical trials of interest. In our
participation to the PM Track we faced the first
subtask. Thus, we focused our efforts on the re-
trieval of scientific abstracts that provide medical
care information useful to deal with each specific
clinical case. With respect to the collection of sci-
entific publications to examine, PM Track organiz-
ers provided a January 2017 snapshot of PubMed
complemented with a set of abstracts from the pro-
ceedings of the American Association of Cancer
Research (AACR) and the American Society of
Clinical Oncology (ASCO).

melanoma
APC loss of function
47-year-old male

Disease
Gene
Demographic

Table 1: Example of clinical case description of
the PM Track 2018.

3 Approach

This Section describes our approach to the scien-
tific abstracts retrieval subtask of the PM Track.
We relied on Elasticsearch! (Gormley and Tong,
2015), an open source Lucene-based full-text
search engine, to index and query the collection of
about 25 million scientific abstracts contemplated
in the PM subtask. In particular, we comple-
mented Elasticsearch powerful capabilities to for-
mulate complex queries to semi-structured textual
documents with: (i) an ad-hoc strategy for term
expansion, useful to automatically expand the set
of terms that will be exploited in Elasticsearch
queries to refer to diseases, genes and gene vari-
ants; (ii) a customized approach to refine the rank-
ing of query results generated by Elasticsearch.
This approach relies on both biomedical informa-
tion extracted from each scientific abstract and
the contents of the TREC_ResMarkerDB Graph, a
knowledge resource properly built for this specific
IR scenario.

In Figure 1 we provide an overview of the dif-
ferent steps of the scientific abstracts retrieval ap-
proach we propose.

In the rest of this Section, we describe in detail
how we indexed data and the different steps of our
scientific abstracts retrieval strategy.

3.1 The TREC_ResMarkerDB Graph

In order to better refine and rank scientific abstract
search results we build the TREC_ResMarkerDB,
a knowledge resource that includes structured in-
formation on biomarkers of drug response in can-
cer. Currently this information can be found
spread across different databases and in scientific
literature. Thus, TREC_ResMarkerDB was cre-
ated as a centralized repository to gather and pro-
vide structured, uniform access to knowledge of
biomarkers of drug response in cancer. It was
built based on the pipeline used for ResCur?: ho-
mogenization, standardization, and relation con-
stitution. Although three major changes were in-

"https://www.elastic.co/products/elasticsearch
*http://resmarkerdb.org
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troduced. Firstly, the source databases selected
were: Cancer Genome Interpreter (Tamborero
et al., 2018) (v.2018/01/17), Clinical Interpreta-
tions of Variants in Cancer (Griffith et al., 2017)
(v.2018/05/01), ResCur (v.2018/07/20) and COS-
MIC (Forbes et al., 2016) (v.2018/05/30). Sec-
ondly, diseases and chemicals were annotated and
standardized using UMLS (Bodenreider, 2004),
as it is a unified language system of controlled
vocabularies. Finally, the information was all
centralized in the association between a gene or
biomarker, a disease and a drug; additionally, there
is information about the evidence level and exact
associated response. Table 2 shows an example of
some records of TREC_ResMarkerDB.

3.2 Data indexing

We relied on the full-text search engine Elastic-
search (version 6.2.2) in order to support index-
ing and querying on the scientific abstracts that
constitute the IR document base of the PM Track
2018 (see Section 2 for more details). To this pur-
pose, we set up a three-node Elasticsearch cluster.
For each abstract of a scientific publication, from

Disease Biomarker | Drug Evid.
or gene level
COREAD | AKT1 E17K | Cetuximab | CL
LUAD RET fusion Sunitinib ET
OS NF1 deletion | Trametinib | CS
THCA RET M918T | Vandetanib | GD

Table 2: Snapshot of the TREC_ResMarkerDB.
COREAD: Colorectal carcinoma, LUAD: Lung
adenocarcinoma, OS: Osteosarcoma, THCA: Thy-
roid carcinoma. The last column specifies the Evi-
dence level and has the following values: CL: clin-
ical, ET: early trials, CS: case study, GD: guide-
lines.

PubMed, AACR or ASCO, we indexed the follow-
ing fields:

e id: the ID of the article (considering the
PubMed ID for PubMed articles and the file
name without extension for AACR or ASCO
articles);

e title: the title of the article;
e abstract: the abstract of the article;

e publication_date: the publication date of the
article. We considered: (i) for PubMed
articles, the most recent date that charac-
terizes the article among the values of the
DateCreated, the DateCompleted and the
DateRevised XML elements as defined in the
PubMed DTD?; (ii) for AACR or ASCO arti-
cles, the year of publication.

3.3 Term expansion: diseases, gene and
variants

As shown in Figure 1, given a clinical case de-
scription, the first step of our scientific abstracts
IR strategy is term expansion. It involves the col-
lection of alternative expressions to describe both
the disease(s) suffered from the patients and their
genetic variant(s). To this purpose we relied on the
Unified Medical Language System (UMLS) (Bo-
denreider, 2004) (see Subsection 3.3.1) to expand
gene and disease names. We also exploted the NCI
Thesaurus OBO Edition (NCIT) (Musen et al.,
2011) and manually created sets of synonyms to
deal with gene variants (see Subsection 3.3.2).

3 Access https://www.nlm.nih.gov/bsd/licensee/ elements-

descriptions.html for a complete description of the date-
related information associated to each



3.3.1 UMLS-based disease and gene term
expansion

The objective of the disease and gene term expan-
sion is to support the formulation of queries with
a higher recall by gathering alternative expressions
useful to refer to the diseases and genes mentioned
in the clinical case descriptions. With this respect,
the 2017AB version of the UMLS has been ex-
ploited as follows: given a disease or gene term,
both synonyms and terms referring to more spe-
cific concepts were retrieved. We implemented
a term expansion procedure consisting of the fol-
lowing steps:

1. retrieval of synonym CUIs: given the gene
or disease label L, we queried the UMLS
Metathesaurus and Semantic Network for all
Concept Unique Identifiers (CUIs) that have
an English label equal to L. Then, diseases
and genes were treated distinctly as follows:

e if [ is a disease it was checked whether
the CUI belongs to one of the follow-
ing UMLS semantic types: Congeni-
tal Abnormality (T019), Acquired Ab-
normality (T020), Finding (T033), In-
jury or Poisoning (T037), Pathologic
Function (T046), Disease or Syndrome
(T047), Mental or Behavioral Dysfunc-
tion (T048), Cell or Molecular Dys-
function (T049), Experimental Model
of Disease (T050), Sign or Symp-
tom (T184), Anatomical Abnormality
(T190) or Neoplastic Process (T191);

e if L is a gene it was examined if the
CUI belongs to the UMLS semantic
type Gene or genome (T028) and is in-
cluded in one of the following sources:
the Medical Subject Headings MeSH
(MSH), the National Cancer Institute
(NCI) Thesaurus (NCI) or the HUGO
Gene Nomenclature (HGNC);

The employed set of UMLS sources and se-
mantic types exploited were identified by
manual exploration and iterative refinement
of term expansion results.

2. retrieval of hyponym CUIs: by relying on
the UMLS Semantic Network, for each syn-
onym CUI retrieved by the previous step, we
gathered all the CUIs of child concepts up
to a depth level of 3 for diseases, and 1 for

genes*. We considered the parent-child rela-
tions has_child (CHD)” and has_narrower”
(NR) formalized in the UMLS Semantic Net-
work. We filtered all the hyponym CUIs by
means of the same constraints over semantic
type and source already exploited in the pre-
vious step;

3. CUI lists enrichment: we enriched each list
of CUIs previously created (synonym CUIs
and hyponym CUIs) by including all the
other UMLS CUIs related by the source as-
serted synonymy (SY) relation to at least one
CUI of the list.

As final result of the term expansion process,
we retrieved all the English labels associated to
each CUI belonging to these two lists. Thus we
created for each initial disease and gene term two
lists of terms: the list of synonyms and the list
of hyponym terms. An overview of the num-
ber of CUIs and terms collected as a result of
the UMLS-based disease and gene term expan-
sion is shown in Table 3 and Table 4 respectively.
In particular, the disease term expansions gener-
ated up to 85 synonyms for each disease term
(Cacute myeloid leukemia’), while the gene term
expansion generated up to 54 synonyms for each
gene term CERBB2’). When we considered the
hyponym concepts up to a depth of three, for
diseases the expansion process generates up to
2,706 more specific terms ('sarcoma’), while for
genes the hyponym concepts up to a depth of one
level managed to gather up to 27 hyponym terms
(CCDKN2A’).

3.3.2

According to their nature, variants were ex-
panded following different patterns. In particu-
lar, we identified two ways to express variants:
(i) non-linguistic variants and (ii) linguistic vari-
ants. While non-linguistic variants are identified
by means of a specific code-based convention (e.g.
V600R, V600K, etc.), linguistic variants are de-
scribed by means of a linguistic expression like:
“amplification’, ’loss of function’ or ’deletion’.
Non-linguistic variants were mapped to their
RSID, when possible, using Biomart Ensembl
tool (Ensembl Genes and Variation, version

Gene variants expansion

“The final depth levels chosen to gather hyponyms of gene
and disease concepts have been identified by comparing term
expansion results with depth level of 1, 3, 5 and 7 for both
diseases and genes.
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gastric 2 | 38| 82 | 450 FGFR1 2 13211122
cancer FLT3 2 11311 8
glioblastoma 2 22| 41 | 201 IDH1 1 111110
glioma 2 | 26| 252 | 1207 KIT 31211171 8
head and neck 1 |11 ] 112 | 1006 MDM?2 11911110
squamous cell MET 312511110
carcinoma NF1 11231117
leukemia 1| 24277 | 2153 NRAS 2> 11711 111
lung cancer 3160|150 | 974 NTRK1 212011 [10
medullary 1 128 12 61 PTCH1 1181113
thyr?id PTEN 1lol1]14
carcinoma RET 302501 |11
melanoma 1 | 14| 146 | 613 ROS1 1110118
neuroblastoma 1|6 | 58 | 189 TP53 2 13212 [16
non-small cell 1] 4] 65| 472
carcinoma Table 4: Result of UMLS-based gene term ex-
papillary 1 (28] 25 | 103 pansion (syn.: synonym, hypo.: hyponym, num.:
thyroid number).
carcinoma
prostate cancer 2 | 31| 61 | 307
sarcoma 1 | 27| 621 | 2706
thyroid 1 |21 | 41 | 270
cancer

Table 3: Result of UMLS-based disease term ex-
pansion (syn.: synonym, hypo.: hyponym, num.:
number).



91) (Kersey et al., 2009). Regarding linguistic
variants, their description was expanded by means
of a set of synonyms provided by different ontolo-
gies like NCI Thesaurus, OBO Edition (NCIT).
For instance, the expressions ’copy number alter-
ation’ and "CNA’ were added as synonyms of the
linguistic variant *amplification’.

3.4 Query building

By properly assembling the set of terms gener-
ated by the term expansion (see Subsection 3.3),
we could proceed with the query building. The
Elasticsearch query had to be useful to retrieve the
ranked list of the top-10,000 most relevant scien-
tific abstracts. In this Section we describe how
we formulated such query. And, in the next Sub-
section (3.5) we will specify the approach we fol-
lowed to refine the ranking of the set of 10,000
query results returned by Elasticsearch: in this
way we generate the final PM Track 2018 results
that include the top-1,000 most relevant scientific
abstracts for each clinical case description.

When building queries we relied on Elastic-
search support for query term boosting. When
a term-based query is formulated in Elasticsearch,
a term boost score can be specified for each search
term contemplated by the query. In this way it is
possible to tune the relative relevance of that term
in ranking query results (in our case scientific ab-
stracts). In general, the relevance of a document
is defined by the contributions of all the search
terms that appear in that document. By default
each search term is given a boost score equal to
1. But, by changing the boost score, the computa-
tion of the relevance score of a document changes.
So, if we assign a boost score of 2 to a term, it will
bring twice the contribution of a term with boost
score of 1.

First we analyzed the Elasticsearch query re-
sults of several term boosting configuration. Then,
we consequently defined the following boosting
rules:

e if a query term appears in the title it is as-
signed a boost score of 8;

e if a query term appears in the abstract text it
is assigned a boost score of 3;

e if a query term is a disease / gene mentioned
in the clinical case description or one of its
synonyms it is assigned a boost score of 5;

e if a query term is a hyponym of a disease /
gene mentioned in the clinical case descrip-
tion it is assigned a boost score of 2;

e if a term is a non-linguistic gene variant men-
tioned in the clinical case description it is as-
signed a boost score of 35;

e if a term is a linguistic gene variant men-
tioned in the clinical case description, or one
of its synonyms, it is assigned a boost score
of 25.

We also created a list of 21 terms and
expressions related to precision medicine
(e.g. "Precision Medicine’, ’Personalized
medicine’, "’PM’, customized medicine’, 'Tailored
treatment’,’ Patient-specific treatment’, ’Molecular
diagnostics’, etc.) and assigned to each one of
these terms a boost score equal to 20.

Hereafter we present an example considering all
the term boosting scores defined before. If we find
in the abstract of a paper an occurrence of a disease
/ gene mentioned in the clinical case description
or one of its synonyms derived by term expansion,
such matching term will have a final boost score
equal to 15. That is 5 multiplied by 3: 5 because
the term is a disease / gene mentioned in the clin-
ical case description or one of its synonyms and 3
because it occurs in the abstract of the paper.

As far as it concerns the match of multi-word
linguistic gene variants (e.g. ’loss of function’),
we performed the search for these expressions by
specifying a slop value equal to 4. This strategy
was followed by taking into account both the main
linguistic variant and its synonyms (e.g. ’copy
number alteration’ and its synonym *’CNA”). Thus,
we considered as valid matches the cases in which
the words of the multi-word expression are sep-
arated by at most 4 other words (e.g. ’loss of
specific function’ represent a match for the search
term ’loss of function’).

In order for a scientific abstract to be considered
as a candidate search result of an Elasticsearch
query, the abstract should: (i) match at least one
term among the set of gene and disease terms de-
rived by term expansion (by considering the term
mentioned in the clinical case description together
with its synonyms and hyponyms), (ii) possibly
match also a gene variant (non-linguistic or lin-
guistic one) and (iii) possibly match one or more
expressions belonging to the list of 21 precision
medicine related terms. Moreover, we considered



as candidate results for our queries only papers
with non empty abstract texts.

3.5 Refinement of query result ranking

By performing the Elasticsearch query described
in Subsection 3.4, we retrieved the 10,000 top-
ranked scientific abstracts for each clinical case
description. For each search result (i.e. abstract)
Elasticsearch computes a relevance score. This
score is used to rank the result with respect to the
other ones; in this way it is possible to quantify the
relative relevance of each abstract in answering the
considered query. The starting point of this sub-
section is the ranked list of 10,000 scientific ab-
stracts retrieved by Elasticsearch for each clinical
case description. Then, here we explain how, in
addition to the Elasticsearch relevance score, we
computed and combined a set of other custom doc-
ument relevance scores so as to determine the final
relevance score (final RelevanceScore) of each
abstract. Such score is exploited to generate, for
each clinical case, the final ranking of scientific
abstracts, thus allowing us to select the top-1,000
most relevant ones that constitute the results of the
PM Track 2018.

To support the computation of the
final RelevanceScore, as a pre-processing
step, we retrieved a list of chemicals from UMLS
according to their semantic type. To this purpose
the semantic types considered were inferred from
the semantic types of known chemicals used in
treatments for breast cancer and colorectal cancer.
These treatments were extracted from ResMark-
erDB. We then identified all the mentions of a
chemical matching one of the selected semantic
types in both the title and the abstract of each
paper.

We computed the final RelevanceScore of the
10,000 top-ranked scientific abstracts retrieved by
Elasticsearch for each clinical case by means of
the following formula, by relying on a custom
combination of a varied set of document relevance
scores.

final RelevanceScore =

2.0 x ESscoreNoerm +

1.0 x ResMarkDBscore +

0.75 x numDisMatchAll_EX ACT +
0.25 * numDisMatchAll_HY PO +
0.90 x numGenMatchAll_EX ACT +

0.5 * numChemM entions

In particular, the computation of the
finalRelevanceScore is based on the fol-
lowing contributions:

e Normalized Elasticsearch relevance score
(ESscoreNorm): the relevance score given
by Elasticsearch to each document retrieved
by the query (normalized to the interval

[Oa 1]),
¢ 'TREC ResMarkerDB’ score
(ResMarkDBscore):  after identifying

mentions of chemicals in the title and abstract
of scientific articles (as explained before in
this Section), we considered all the abstracts
that include mentions of at least one gene,
one chemical and one disease. Each (gene,
chemical, disease) combination occurring
in these abstracts was evaluated using the
TREC_ResMarkerDB (see Subsection 3.1).
This centralized repository assessed the
current knowledge regarding the response
(e.g. sensitive or resistant) and the evidence
level (e.g. preclinical level, clinical level or
guidelines) of the reported association. To
finally generate a score in the interval [0, 1]
documents without the occurrence of any
(gene, chemical, disease) combination were
scored 0. If there was more than one (gene,
chemical, disease) combination matching in
TREC _ResMarkerDB, the highest score was
kept.

e numDisMatchAll_EXACT /
numGenMatchAll_EXACT is  the
number of occurrences of the disease /
gene term mentioned in the clinical case
description, or one of its synonyms (derived
by term expansion), considering the title and
abstract of a retrieved paper;

o numDisMatchAll_HY PO is the number
of occurrences of a disease term that is a hy-
ponym of the disease mentioned in the clini-
cal case description (derived by term expan-
sion), considering the title and abstract of a
retrieved paper;

o numChemM entions is the number of dif-
ferent chemicals mentioned considering the
title or abstract of a retrieved paper.

The values of numDisMatchAll_EXACT,
numGenMatchAll_EX ACT,



numDisMatchAll_HY PO and
numChemMentions were all normalized
to the interval [0,1] by considering the range
of values occurring in the 10,000 top-ranked
scientific abstracts retrieved by Elasticsearch. The
weight of each member of the previous formula
has been defined by a trial and error approach, by
evaluating the finalRelevanceScore obtained
by different weights’ combinations.

After  performing the refinement of
query results, we could compute the
final RelevanceScore of each one of the
10,000 top-ranked scientific abstracts retrieved by
Elasticsearch for each clinical case. We submitted
three runs to PM Track subtask related to the
ranking of scientific abstracts. Each run is charac-
terized by a specific approach to select the ranked
list of 1,000 abstracts to consider as the final
results of the PM Track 2018, starting from the set
of 10,000 abstracts retrieved by Elasticsearch and
ranked by their final RelevanceScore. Hereafter
we describe the approach we followed in each
run.

Run 1: we started off with the set of 10,000
abstracts retrieved by Elasticsearch. We then se-
lected the final list of top-1,000 abstracts to con-
sider as the 'Run 1’ results of the PM Track 2018.
These consisted on documents from the following
subgroups (understanding all the documents of the
first subgroup as the top-ranked set, then all the
ones from the second subgroup, etc.):

e abstracts with at least one mention of a dis-
ease (synonym or hyponym term), a gene
(synonym or hyponym term) and a variant in
the title;

e abstracts with at least one mention of a dis-
ease (synonym or hyponym term) and a gene
(synonym or hyponym term) in the title and
no variant mentions;

e abstracts with at least one mention of a dis-
ease (synonym or hyponym term), a gene
(synonym or hyponym term) and a variant
considering both title and abstract;

e abstracts with at least one mention of a
disease (synonym or hyponym term) and a
gene (synonym or hyponym term) consider-
ing both title and abstract and no variant men-
tions;

e abstracts with one mention of a disease (syn-
onym or hyponym term) or (XOR) one men-
tion of a gene (synonym or hyponym term)
together with one or more variant mentions,
considering both title and abstract;

e abstracts with one mention of a disease (syn-
onym or hyponym term) or (XOR) one men-
tion of a gene (synonym or hyponym term)
considering both title and abstract and no
variant mentions;

In each subgroup, documents are ordered by
their final RelevanceScore and, in case of equal
final RelevanceScore by their publication date.

Run 2: with respect to ’Run 1°, in ’Run 2" we
do not gave precedence to term matches in the title
with respect to term matches in the abstract text.
As a consequence, again, we started off with the
set of 10,000 abstracts retrieved by Elasticsearch.
We then selected the final list of top-1,000 ab-
stracts to consider as result of the PM Track 2018.
The documents were selected by considering those
from the following subgroups (again, understand-
ing all the documents of the first subgroup as the
top-ranked set, then all the ones from the second
subgroup, etc.):

e abstracts with at least one mention of a dis-
ease (synonym or hyponym term), a gene
(synonym or hyponym term) and a variant,
considering both title and abstract

e abstracts with at least one mention of a dis-
ease (synonym or hyponym term) and a gene
(synonym or hyponym term), considering
both title and abstract (no variant mentions)

e abstracts with one mention of a disease (syn-
onym or hyponym term) or (XOR) one men-
tion of a gene (synonym or hyponym term)
eventually with one or more variant men-
tions, considering both title and abstract

As for other runs, in each subgroup, documents
are ordered by their finalRelevanceScore and
in case of equal finalRelevanceScore by their
publication date.

Run 3: in ’Run 3’ we ranked documents by
matching the age of the patient specified by each
clinical case description with the set of age-ranges
mentioned in the abstract, if any. In particular, we
extracted age-ranges of patients from the 10,000



top-ranked scientific abstracts retrieved by Elas-
ticsearch (e.g. “between X and Y years old”,
”aged X - Y years”), where available. To this pur-
pose we exploited a set of linguistic rules built by
means of the JAPE tool®. Thus, given the age of
the patient specified by the clinical case descrip-
tion, we were able to identify all the abstracts in
which such age is included in one or more age-
ranges occurring in the same document. As a con-
sequence, we selected the final list of top-1,000
abstracts to consider as result of the PM Track
2018 by considering those from the following two
subgroups (understanding all the documents of the
first sub-group as the top-ranked set, then all the
ones from the second sub-group):

e abstracts with one or more age-ranges includ-
ing the age of the patient;

e abstract with age-ranges not including the
age of the patient or without any age-range
specified.

Inside each one of these two subgrous the ab-
stracts were ordered by the same approach defined
for ’Run 1’ (all the documents of the first subgroup
defined for 'Run 1’ and with one or more age-
range matches as the top-ranked set, then all the
ones from the second subgroup defined for ’Run
1’ and with one or more age-range matches, etc.).
But, first we considered the abstracts matching the
age-ranges and then the remaining abstracts up to
reaching a maximum of 1,000.

4 System performance

Among the three run submitted (see Subsec-
tion 3.5) the approach followed in the 'Run 1’ is
the one that obtained the best overall evaluation
scores in the PM Track 2018. In Figure 2, Figure 3
and Figure 4, we show the evaluation results of
our 'Run 1’ by means of different parameters. In
particular we consider the following system eval-
uation metrics: the Normalized Discounted Cu-
mulative Gain in Figure 2, the Precision@10 in
Figure 3 and the R-precision in Figure 4. Those
evaluation results are shown for each one of the
50 clinical case descriptions and, together with the
median and best result obtained by all the partici-
pating teams of the PM Track 2018.

>https://gate.ac.uk/sale/tao/splitch8.html

5 Conclusions and future work

In this paper we presented and discussed our par-
ticipation to the Precision Medicine Track orga-
nized in the context of Text Retrieval Conference
2018 (TREC). In particular, we described in de-
tail our approach to retrieve from PubMed and
other repositories of biomedical scientific publica-
tions, papers that propose medical cares relevant
to a specific clinical case. As future venues of re-
search, we would like to perform an in depth eval-
uation of the different steps of the Information Re-
trieval strategy we developed in order to improve
both its effectiveness and efficiency. We would
also like to set up and make available online a Pre-
cision Medicine search engine that implements the
scientific abstract search approach proposed.
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Figure 3: Precision@10 (P10) of best run (RUN 1) per topic (together with median and best P10 among
all PM Track runs)
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Figure 4: R-precision (rPREC) of best run (RUN 1) per topic (together with median and best rPREC
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